Proceedings of ELM 2021
Proceedings of ELM 2021
Buch
- Theory, Algorithms and Applications
- Herausgeber: Kaj-Mikael Björk
lieferbar innerhalb 2-3 Wochen
(soweit verfügbar beim Lieferanten)
(soweit verfügbar beim Lieferanten)
EUR 240,94*
Verlängerter Rückgabezeitraum bis 31. Januar 2025
Alle zur Rückgabe berechtigten Produkte, die zwischen dem 1. bis 31. Dezember 2024 gekauft wurden, können bis zum 31. Januar 2025 zurückgegeben werden.
- Springer International Publishing, 01/2024
- Einband: Kartoniert / Broschiert, Paperback
- Sprache: Englisch
- ISBN-13: 9783031216800
- Bestellnummer: 11740120
- Umfang: 180 Seiten
- Nummer der Auflage: 24001
- Auflage: 1st ed. 2023
- Gewicht: 283 g
- Maße: 235 x 155 mm
- Stärke: 11 mm
- Erscheinungstermin: 20.1.2024
- Serie: Proceedings in Adaptation, Learning and Optimization - Band 16
Achtung: Artikel ist nicht in deutscher Sprache!
Weitere Ausgaben von Proceedings of ELM 2021
Klappentext
This book contains papers from the International Conference on Extreme Learning Machine 2021, which was held in virtual on December 15 16, 2021. Extreme learning machines (ELM) aims to enable pervasive learning and pervasive intelligence. As advocated by ELM theories, it is exciting to see the convergence of machine learning and biological learning from the long-term point of view. ELM may be one of the fundamental `learning particles filling the gaps between machine learning and biological learning (of which activation functions are even unknown). ELM represents a suite of (machine and biological) learning techniques in which hidden neurons need not be tuned: inherited from their ancestors or randomly generated. ELM learning theories show that effective learning algorithms can be derived based on randomly generated hidden neurons (biological neurons, artificial neurons, wavelets, Fourier series, etc.) as long as they are nonlinear piecewise continuous, independent of training dataand application environments. Increasingly, evidence from neuroscience suggests that similar principles apply in biological learning systems. ELM theories and algorithms argue that random hidden neurons capture an essential aspect of biological learning mechanisms as well as the intuitive sense that the efficiency of biological learning need not rely on computing power of neurons. ELM theories thus hint at possible reasons why the brain is more intelligent and effective than current computers.This conference provides a forum for academics, researchers, and engineers to share and exchange R&D experience on both theoretical studies and practical applications of the ELM technique and brain learning.
This book covers theories, algorithms, and applications of ELM. It gives readers a glance of the most recent advances of ELM.
Proceedings of ELM 2021
EUR 240,94*