Pascal Remy: Asymptotic Expansions and Summability
Asymptotic Expansions and Summability
Buch
- Application to Partial Differential Equations
lieferbar innerhalb einer Woche
(soweit verfügbar beim Lieferanten)
(soweit verfügbar beim Lieferanten)
EUR 76,66*
Verlängerter Rückgabezeitraum bis 31. Januar 2025
Alle zur Rückgabe berechtigten Produkte, die zwischen dem 1. bis 31. Dezember 2024 gekauft wurden, können bis zum 31. Januar 2025 zurückgegeben werden.
- Springer Nature Switzerland, 07/2024
- Einband: Kartoniert / Broschiert, Paperback
- Sprache: Englisch
- ISBN-13: 9783031590931
- Bestellnummer: 11909226
- Umfang: 260 Seiten
- Auflage: 2024
- Gewicht: 400 g
- Maße: 235 x 155 mm
- Stärke: 15 mm
- Erscheinungstermin: 2.7.2024
- Serie: Lecture Notes in Mathematics - Band 2351
Achtung: Artikel ist nicht in deutscher Sprache!
Klappentext
This book provides a comprehensive exploration of the theory of summability of formal power series with analytic coefficients at the origin of Cn, aiming to apply it to formal solutions of partial differential equations (PDEs). It offers three characterizations of summability and discusses their applications to PDEs, which play a pivotal role in understanding physical, chemical, biological, and ecological phenomena.Determining exact solutions and analyzing properties such as dynamic and asymptotic behavior are major challenges in this field. The book compares various summability approaches and presents simple applications to PDEs, introducing theoretical tools such as Nagumo norms, Newton polygon, and combinatorial methods. Additionally, it presents moment PDEs, offering a broad class of functional equations including classical, fractional, and q-difference equations. With detailed examples and references, the book caters to readers familiar with the topics seeking proofs or deeper understanding, as well as newcomers looking for comprehensive tools to grasp the subject matter. Whether readers are seeking precise references or aiming to deepen their knowledge, this book provides the necessary tools to understand the complexities of summability theory and its applications to PDEs.