N. Padmaja: Big Data Analytics for the Prediction of Tourist Preferences Worldwide
Big Data Analytics for the Prediction of Tourist Preferences Worldwide
Buch
lieferbar innerhalb 2-3 Wochen
(soweit verfügbar beim Lieferanten)
(soweit verfügbar beim Lieferanten)
EUR 90,93*
Verlängerter Rückgabezeitraum bis 31. Januar 2025
Alle zur Rückgabe berechtigten Produkte, die zwischen dem 1. bis 31. Dezember 2024 gekauft wurden, können bis zum 31. Januar 2025 zurückgegeben werden.
- Emerald Group Publishing Limited, 02/2024
- Einband: Gebunden, HC gerader Rücken kaschiert
- Sprache: Englisch
- ISBN-13: 9781835493397
- Bestellnummer: 11845599
- Umfang: 144 Seiten
- Gewicht: 372 g
- Maße: 235 x 157 mm
- Stärke: 13 mm
- Erscheinungstermin: 22.2.2024
Achtung: Artikel ist nicht in deutscher Sprache!
Klappentext
Big Data analytics and machine learning are being adopted in a range of industries - but how can these technologies be utilised and what can they offer to the tourism industry? In the process of their journeys and in their decision-making processes, people who travel contribute to the generation of a huge flow of data; all this information is a potential base for creating smart destinations and improving tourism organizations' potential to customize their products and service offerings.The real execution of such inventive forms of data-driven value generation in tourism continues to be more restricted to the theory or used in a few exceptional cases. Big data and machine learning techniques in tourism persists as an unclear concept and a subject of investigation that necessitates closer analysis from an extensive range of field and research methods. Big Data Analytics for the Prediction of Tourist Preferences Worldwide tackles this challenge, exploring the benefits, importance and demonstrates how Big Data can be applied in predicting tourist preferences and delivering tourism services in a customer friendly manner.
The authors provide theoretical and experiential contributions designed to see a wider adoption of these technologies in the tourism industry.