Matthias Karlbauer: Artificial Neural Networks for Knowledge Extraction in Spatiotemporal Dynamics and Weather..., Kartoniert / Broschiert
Artificial Neural Networks for Knowledge Extraction in Spatiotemporal Dynamics and Weather Forecasting
Buch
- Verlag:
- Tübingen Library Publishing, 03/2025
- Einband:
- Kartoniert / Broschiert
- Sprache:
- Deutsch, Englisch
- ISBN-13:
- 9783989440258
- Artikelnummer:
- 12233898
- Umfang:
- 190 Seiten
- Gewicht:
- 372 g
- Maße:
- 240 x 170 mm
- Stärke:
- 12 mm
- Erscheinungstermin:
- 18.3.2025
Klappentext
This thesis explores the potential of machine learning methods for improving weather forecasts. Since weather is considered a spatiotemporal process that evolves over space through time, the thesis first investigates the design choices required for machine learning models to simulate synthetic spatiotemporal processes, such as the two-dimensional wave equation. It then develops a method for analyzing machine learning models that enables the extraction of unknown process-relevant context that parameterizes an observed simulated spatiotemporal process of interest. Relating these extracted factors to physical properties leads the thesis to physics-aware machine learning, where it explores how to fuse process knowledge from physics with the learning ability of artificial neural networks. Given the insights from those investigations, a competitive deep learning weather prediction model is designed to understand which design choices support data-driven algorithms to learn a meaningful function that predicts realistic and stable states of the atmosphere over hundreds of hours, days, and weeks into the future.Anmerkungen:
Bitte beachten Sie, dass auch wir der Preisbindung unterliegen und kurzfristige Preiserhöhungen oder -senkungen an Sie weitergeben müssen.