Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track
Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track
Buch
- European Conference, ECML PKDD 2023, Turin, Italy, September 18¿22, 2023, Proceedings, Part VI
- Herausgeber: Gianmarco de Francisci Morales, Claudia Perlich, Francesco Bonchi, Nicolas Kourtellis, Elena Baralis, Natali Ruchansky
lieferbar innerhalb 2-3 Wochen
(soweit verfügbar beim Lieferanten)
(soweit verfügbar beim Lieferanten)
EUR 93,08*
Verlängerter Rückgabezeitraum bis 31. Januar 2025
Alle zur Rückgabe berechtigten Produkte, die zwischen dem 1. bis 31. Dezember 2024 gekauft wurden, können bis zum 31. Januar 2025 zurückgegeben werden.
- Springer Nature Switzerland, 09/2023
- Einband: Kartoniert / Broschiert, Paperback
- Sprache: Englisch
- ISBN-13: 9783031434266
- Bestellnummer: 11612796
- Umfang: 760 Seiten
- Nummer der Auflage: 23001
- Auflage: 1st ed. 2023
- Gewicht: 1130 g
- Maße: 235 x 155 mm
- Stärke: 41 mm
- Erscheinungstermin: 18.9.2023
- Serie: Lecture Notes in Artificial Intelligence - Band 14174
Achtung: Artikel ist nicht in deutscher Sprache!
Weitere Ausgaben von Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track
Klappentext
The multi-volume set LNAI 14169 until 14175 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2023, which took place in Turin, Italy, in September 2023.The 196 papers were selected from the 829 submissions for the Research Track, and 58 papers were selected from the 239 submissions for the Applied Data Science Track.
The volumes are organized in topical sections as follows:
Part I: Active Learning; Adversarial Machine Learning; Anomaly Detection; Applications; Bayesian Methods; Causality; Clustering.
Part II: Computer Vision; Deep Learning; Fairness; Federated Learning; Few-shot learning; Generative Models; Graph Contrastive Learning.
Part III: Graph Neural Networks; Graphs; Interpretability; Knowledge Graphs; Large-scale Learning.
Part IV: Natural Language Processing; Neuro / Symbolic Learning; Optimization; Recommender Systems; Reinforcement Learning; Representation Learning. Part V: Robustness; Time Series; Transfer and Multitask Learning.
Part VI: Applied Machine Learning; Computational Social Sciences; Finance; Hardware and Systems; Healthcare & Bioinformatics; Human-Computer Interaction; Recommendation and Information Retrieval.
Part VII: Sustainability, Climate, and Environment.- Transportation & Urban Planning.- Demo.