Jürgen Jost: Mathematical Principles of Topological and Geometric Data Analysis
Mathematical Principles of Topological and Geometric Data Analysis
Buch
lieferbar innerhalb 2-3 Wochen
(soweit verfügbar beim Lieferanten)
(soweit verfügbar beim Lieferanten)
EUR 53,32*
Verlängerter Rückgabezeitraum bis 31. Januar 2025
Alle zur Rückgabe berechtigten Produkte, die zwischen dem 1. bis 31. Dezember 2024 gekauft wurden, können bis zum 31. Januar 2025 zurückgegeben werden.
- Springer International Publishing, 07/2024
- Einband: Kartoniert / Broschiert, Paperback
- Sprache: Englisch
- ISBN-13: 9783031334429
- Bestellnummer: 11932691
- Umfang: 292 Seiten
- Nummer der Auflage: 2023
- Auflage: 2023
- Gewicht: 446 g
- Maße: 235 x 155 mm
- Stärke: 16 mm
- Erscheinungstermin: 31.7.2024
Achtung: Artikel ist nicht in deutscher Sprache!
Weitere Ausgaben von Mathematical Principles of Topological and Geometric Data Analysis
Klappentext
This book explores and demonstrates how geometric tools can be used in data analysis. Beginning with a systematic exposition of the mathematical prerequisites, covering topics ranging from category theory to algebraic topology, Riemannian geometry, operator theory and network analysis, it goes on to describe and analyze some of the most important machine learning techniques for dimension reduction, including the different types of manifold learning and kernel methods. It also develops a new notion of curvature of generalized metric spaces, based on the notion of hyperconvexity, which can be used for the topological representation of geometric information.In recent years there has been a fascinating development: concepts and methods originally created in the context of research in pure mathematics, and in particular in geometry, have become powerful tools in machine learning for the analysis of data. The underlying reason for this is that data are typically equipped with somekind of notion of distance, quantifying the differences between data points. Of course, to be successfully applied, the geometric tools usually need to be redefined, generalized, or extended appropriately.
Primarily aimed at mathematicians seeking an overview of the geometric concepts and methods that are useful for data analysis, the book will also be of interest to researchers in machine learning and data analysis who want to see a systematic mathematical foundation of the methods that they use.