Irik Z. Mukhametzyanov: Normalization of Multidimensional Data for Multi-Criteria Decision Making Problems
Normalization of Multidimensional Data for Multi-Criteria Decision Making Problems
Buch
- Inversion, Displacement, Asymmetry
lieferbar innerhalb 2-3 Wochen
(soweit verfügbar beim Lieferanten)
(soweit verfügbar beim Lieferanten)
EUR 153,32*
Verlängerter Rückgabezeitraum bis 31. Januar 2025
Alle zur Rückgabe berechtigten Produkte, die zwischen dem 1. bis 31. Dezember 2024 gekauft wurden, können bis zum 31. Januar 2025 zurückgegeben werden.
- Springer International Publishing, 07/2024
- Einband: Kartoniert / Broschiert, Paperback
- Sprache: Englisch
- ISBN-13: 9783031338397
- Bestellnummer: 11929963
- Umfang: 324 Seiten
- Auflage: 2023
- Gewicht: 493 g
- Maße: 235 x 155 mm
- Stärke: 18 mm
- Erscheinungstermin: 27.7.2024
- Serie: International Series in Operations Research & Management Science - Band 348
Achtung: Artikel ist nicht in deutscher Sprache!
Weitere Ausgaben von Normalization of Multidimensional Data for Multi-Criteria Decision Making Problems
Klappentext
This book presents a systematic review of multidimensional normalization methods and addresses problems frequently encountered when using various methods and ways to eliminate them.The invariant properties of the linear normalization methods presented here can be used to eliminate simple problems and avoid obvious errors when choosing a normalization method. The book introduces valuable, novel techniques for the multistep normalization of multidimensional data. One of these methods involves inverting the normalized values of cost attributes into profit attributes based on the reverse sorting algorithm (ReS algorithm). Another approach presented is the IZ method, which addresses the issue of shift in normalized attribute values. Additionally, a new method for normalizing the decision matrix is proposed, called the MS method, which ensures the equalization of average values and variances of attributes.
Featuring numerous illustrative examples throughout, the book helps readers to understand what difficulties can arise in multidimensional normalization, what to expect from such problems, and how to solve them. It is intended for academics and professionals in various areas of data science, computing in mathematics, and statistics, as well as decision-making and operations.