Edward C. Waymire: Continuous Parameter Markov Processes and Stochastic Differential Equations
Continuous Parameter Markov Processes and Stochastic Differential Equations
Buch
lieferbar innerhalb 2-3 Wochen
(soweit verfügbar beim Lieferanten)
(soweit verfügbar beim Lieferanten)
EUR 69,33*
Verlängerter Rückgabezeitraum bis 31. Januar 2025
Alle zur Rückgabe berechtigten Produkte, die zwischen dem 1. bis 31. Dezember 2024 gekauft wurden, können bis zum 31. Januar 2025 zurückgegeben werden.
- Springer Nature Switzerland, 11/2024
- Einband: Kartoniert / Broschiert, Paperback
- Sprache: Englisch
- ISBN-13: 9783031341533
- Bestellnummer: 12113494
- Umfang: 524 Seiten
- Gewicht: 881 g
- Maße: 235 x 155 mm
- Stärke: 27 mm
- Erscheinungstermin: 17.11.2024
Achtung: Artikel ist nicht in deutscher Sprache!
Weitere Ausgaben von Continuous Parameter Markov Processes and Stochastic Differential Equations
Klappentext
This graduate text presents the elegant and profound theory of continuous parameter Markov processes and many of its applications. The authors focus on developing context and intuition before formalizing the theory of each topic, illustrated with examples.After a review of some background material, the reader is introduced to semigroup theory, including the Hille Yosida Theorem, used to construct continuous parameter Markov processes. Illustrated with examples, it is a cornerstone of Feller s seminal theory of the most general one-dimensional diffusions studied in a later chapter. This is followed by two chapters with probabilistic constructions of jump Markov processes, and processes with independent increments, or Lévy processes. The greater part of the book is devoted to Itô s fascinating theory of stochastic differential equations, and to the study of asymptotic properties of diffusions in all dimensions, such as explosion, transience, recurrence, existence of steady states, and the speed of convergence to equilibrium. A broadly applicable functional central limit theorem for ergodic Markov processes is presented with important examples. Intimate connections between diffusions and linear second order elliptic and parabolic partial differential equations are laid out in two chapters, and are used for computational purposes. Among Special Topics chapters, two study anomalous diffusions: one on skew Brownian motion, and the other on an intriguing multi-phase homogenization of solute transport in porous media.