Arka Mukherjee: Developing a Path to Data Dominance
Developing a Path to Data Dominance
Buch
- Strategies for Digital Data-Centric Enterprises
lieferbar innerhalb 2-3 Wochen
(soweit verfügbar beim Lieferanten)
(soweit verfügbar beim Lieferanten)
EUR 69,33*
Verlängerter Rückgabezeitraum bis 31. Januar 2025
Alle zur Rückgabe berechtigten Produkte, die zwischen dem 1. bis 31. Dezember 2024 gekauft wurden, können bis zum 31. Januar 2025 zurückgegeben werden.
- Springer Nature Switzerland, 04/2024
- Einband: Kartoniert / Broschiert, Paperback
- Sprache: Englisch
- ISBN-13: 9783031264030
- Bestellnummer: 11853708
- Umfang: 304 Seiten
- Nummer der Auflage: 2023
- Auflage: 2023
- Gewicht: 464 g
- Maße: 235 x 155 mm
- Stärke: 17 mm
- Erscheinungstermin: 27.4.2024
Achtung: Artikel ist nicht in deutscher Sprache!
Weitere Ausgaben von Developing a Path to Data Dominance
Klappentext
Most existing companies struggle currently because they lack the tools and strategies to move product departments into independent platforms that can be retrofitted to form dynamic new products based on consumer demands. This book provides managers and professionals with the necessary approaches for designing software and hardware architectures to support data platform organizations. Specifically, it demonstrates how to automate the decomposition of existing platforms into smaller parts that can be reused to form new variations. This task requires significant analysis and design methodologies and procedures to create an infrastructure based on data as opposed to products. These new knowledge bases allow data-centric professionals to pursue actions that can better predict and respond to the unexpected.Featuring case examples from companies such as Lego, FedEx, General Electric (GE), Pfizer, P&G and more, this book is appropriate for C-level executives engagedin the digital transformation of their firms; entrepreneurs of digital platform companies; and senior software engineers that need to design Internet of Things (IoT) devices and integrate them with block chain and multi-cloud architectures. In addition, this book is also useful for graduate-level coursework in data science.