Albert C. J. Luo: Two-dimensionalProduct-cubic Systems, Vol.II
Two-dimensionalProduct-cubic Systems, Vol.II
Buch
- Product-quadratic Vector Fields
lieferbar innerhalb 2-3 Wochen
(soweit verfügbar beim Lieferanten)
(soweit verfügbar beim Lieferanten)
EUR 175,23*
Verlängerter Rückgabezeitraum bis 31. Januar 2025
Alle zur Rückgabe berechtigten Produkte, die zwischen dem 1. bis 31. Dezember 2024 gekauft wurden, können bis zum 31. Januar 2025 zurückgegeben werden.
- Springer Nature Switzerland, 11/2024
- Einband: Gebunden, HC runder Rücken kaschiert
- Sprache: Englisch
- ISBN-13: 9783031571152
- Bestellnummer: 12100565
- Umfang: 304 Seiten
- Gewicht: 676 g
- Maße: 241 x 160 mm
- Stärke: 21 mm
- Erscheinungstermin: 12.11.2024
Achtung: Artikel ist nicht in deutscher Sprache!
Klappentext
This book, the sixth of 15 related monographs, discusses singularity and networks of equilibriums and 1-diemsnional flows in product quadratic and cubic systems. The author explains how, in the networks, equilibriums have source, sink and saddles with counter-clockwise and clockwise centers and positive and negative saddles, and the 1-dimensional flows includes source and sink flows, parabola flows with hyperbolic and hyperbolic-secant flows. He further describes how the singular equilibriums are saddle-source (sink) and parabola-saddles for the appearing bifurcations, and the 1-dimensional singular flows are the hyperbolic-to-hyperbolic-secant flows and inflection source (sink) flows for 1-dimensional flow appearing bifurcations, and the switching bifurcations are based on the infinite-equilibriums, including inflection-source (sink), parabola-source (sink), up-down and down-up upper-saddle (lower-saddle), up-down (down-up) sink-to-source and source-to-sink, hyperbolic and hyperbolic-secant saddles. The diagonal-inflection upper-saddle and lower-saddle infinite-equilibriums are for the double switching bifurcations. The networks of hyperbolic flows with connected saddle, source and center are presented, and the networks of the hyperbolic flows with paralleled saddle and center are also illustrated. Readers will learn new concepts, theory, phenomena, and analysis techniques.Product-quadratic and product cubic systems
Self-linear and crossing-quadratic product vector fields
Self-quadratic and crossing-linear product vector fields
Hybrid networks of equilibriums and 1-dimensional flows
Up-down and down-up saddle infinite-equilibriums
Up-down and down-up sink-to-source infinite-equilibriums
Inflection-source (sink) Infinite-equilibriums
Diagonal inflection saddle infinite-equilibriums
Infinite-equilibrium switching bifurcations