Albert C. J. Luo: Two-dimensional Crossing and Product Cubic Systems, Vol. I
Two-dimensional Crossing and Product Cubic Systems, Vol. I
Buch
- Self-linear and Crossing-quadratic Product Vector Field
- Verlag:
- Springer Nature Switzerland, 01/2025
- Einband:
- Gebunden
- Sprache:
- Englisch
- ISBN-13:
- 9783031595813
- Artikelnummer:
- 12171678
- Umfang:
- 252 Seiten
- Gewicht:
- 591 g
- Maße:
- 241 x 160 mm
- Stärke:
- 19 mm
- Artikelnummer:
- 12171678
- Erscheinungstermin:
- 30.1.2025
- Hinweis
-
Achtung: Artikel ist nicht in deutscher Sprache!
Klappentext
This book, the 14th of 15 related monographs on Cubic Dynamical Systems, discusses crossing and product cubic systems with a self-linear and crossing-quadratic product vector field. Dr. Luo discusses singular equilibrium series with inflection-source (sink) flows that are switched with parabola-source (sink) infinite-equilibriums. He further describes networks of simple equilibriums with connected hyperbolic flows are obtained, which are switched with inflection-source (sink) and parabola-saddle infinite-equilibriums, and nonlinear dynamics and singularity for such crossing and product cubic systems. In such cubic systems, the appearing bifurcations are:- double-inflection saddles,
- inflection-source (sink) flows,
- parabola-saddles (saddle-center),
- third-order parabola-saddles,
- third-order saddles and centers.
· Develops a theory of crossing and product cubic systems with a self-linear and crossing-quadratic product vector field;
· Presents singular equilibrium series with inflection-source (sink) flows and networks of simple equilibriums;
· Shows equilibrium appearing bifurcations of (2, 2)-double-inflection saddles and inflection-source (sink) flows.