Peter Flach: Machine Learning, Kartoniert / Broschiert
Machine Learning
Buch
- The Art and Science of Algorithms that Make Sense of Data
lieferbar innerhalb 2-3 Wochen
(soweit verfügbar beim Lieferanten)
(soweit verfügbar beim Lieferanten)
Aktueller Preis: EUR 113,54
- Verlag:
- Cambridge University Press, 02/2019
- Einband:
- Kartoniert / Broschiert, Paperback
- Sprache:
- Englisch
- ISBN-13:
- 9781107422223
- Artikelnummer:
- 2874884
- Umfang:
- 416 Seiten
- Sonstiges:
- w. 120 col. ill. 15 tables
- Copyright-Jahr:
- 2012
- Gewicht:
- 989 g
- Maße:
- 244 x 189 mm
- Stärke:
- 27 mm
- Erscheinungstermin:
- 19.2.2019
- Hinweis
-
Achtung: Artikel ist nicht in deutscher Sprache!
Weitere Ausgaben von Machine Learning |
Preis |
---|
Kurzbeschreibung
Covering all the main approaches in state-of-the-art machine learning research, this will set a new standard as an introductory textbook.Beschreibung
As one of the most comprehensive machine learning texts around, this book does justice to the field's incredible richness, but without losing sight of the unifying principles. Peter Flach's clear, example-based approach begins by discussing how a spam filter works, which gives an immediate introduction to machine learning in action, with a minimum of technical fuss. Flach provides case studies of increasing complexity and variety with well-chosen examples and illustrations throughout. He covers a wide range of logical, geometric and statistical models and state-of-the-art topics such as matrix factorisation and ROC analysis. Particular attention is paid to the central role played by features. The use of established terminology is balanced with the introduction of new and useful concepts, and summaries of relevant background material are provided with pointers for revision if necessary. These features ensure Machine Learning will set a new standard as an introductory textbook.Inhaltsangabe
Prologue: a machine learning sampler; 1. The ingredients of machine learning; 2. Binary classification and related tasks; 3. Beyond binary classification; 4. Concept learning; 5. Tree models; 6. Rule models; 7. Linear models; 8. Distance-based models; 9. Probabilistic models; 10. Features; 11. In brief: model ensembles; 12. In brief: machine learning experiments; Epilogue: where to go from here; Important points to remember; Bibliography; Index.Klappentext
An introductory textbook covering all the main approaches in state-of-the-art machine learning research.
Peter Flach
Machine Learning
Aktueller Preis: EUR 113,54