Maciej ¿Awry¿Czuk: Computationally Efficient Model Predictive Control Algorithms
Computationally Efficient Model Predictive Control Algorithms
Buch
- A Neural Network Approach
lieferbar innerhalb 2-3 Wochen
(soweit verfügbar beim Lieferanten)
(soweit verfügbar beim Lieferanten)
-33%
EUR 164,28**
EUR 109,51*
- Springer International Publishing, 02/2014
- Einband: Gebunden, HC runder Rücken kaschiert
- Sprache: Englisch
- ISBN-13: 9783319042282
- Artikelnummer: 3889237
- Umfang: 340 Seiten
- Sonstiges: 87 SW-Abb.,
- Nummer der Auflage: 2014
- Auflage: 2014
- Copyright-Jahr: 2014
- Gewicht: 672 g
- Maße: 235 x 155 mm
- Stärke: 24 mm
- Erscheinungstermin: 4.2.2014
Achtung: Artikel ist nicht in deutscher Sprache!
Weitere Ausgaben von Computationally Efficient Model Predictive Control Algorithms
Kurzbeschreibung
This book discusses computationally efficient (suboptimal) Model Predictive Control (MPC) techniques based on neural models. Covers feed forward perceptron neural models, neural Hammerstein models and more with high accuracy and computational efficiency.Inhaltsangabe
MPC Algorithms.-
MPC Algorithms Based on Double-Layer Perceptron
Neural Models: the Prototypes.-
MPC Algorithms Based on Neural Hammerstein and
Wiener Models.-
MPC Algorithms Based on Neural State-Space Models.-
MPC Algorithms Based on Neural Multi-Models.-
MPC Algorithms with Neural Approximation.-
Stability and Robustness of MPC Algorithms.-
Cooperation Between MPC Algorithms and Set-Point
Optimisation Algorithms.
Klappentext
This book thoroughly discusses computationally efficient (suboptimal) Model Predictive Control (MPC) techniques based on neural models. The subjects treated include:· A few types of suboptimal MPC algorithms in which a linear approximation of the model or of the predicted trajectory is successively calculated on-line and used for prediction.
· Implementation details of the MPC algorithms for feed forward perceptron neural models, neural Hammerstein models, neural Wiener models and state-space neural models.
· The MPC algorithms based on neural multi-models (inspired by the idea of predictive control).
· The MPC algorithms with neural approximation with no on-line linearization.
· The MPC algorithms with guaranteed stability and robustness.
· Cooperation between the MPC algorithms and set-point optimization.
Thanks to linearization (or neural approximation), the presented suboptimal algorithms do not require demanding on-line nonlinear optimization. The presented simulation results demonstrate high accuracy and computational efficiency of the algorithms. For a few representative nonlinear benchmark processes, such as chemical reactors and a distillation column, for which the classical MPC algorithms based on linear models do not work properly, the trajectories obtained in the suboptimal MPC algorithms are very similar to those given by the ``ideal'' MPC algorithm with on-line nonlinear optimization repeated at each sampling instant. At the same time, the suboptimal MPC algorithms are significantly less computationally demanding.
Maciej ¿Awry¿Czuk
Computationally Efficient Model Predictive Control Algorithms
EUR 164,28**
EUR 109,51*