Forecasting Methods for Renewable Power Generation, Gebunden
Forecasting Methods for Renewable Power Generation
Buch
Artikel noch nicht erschienen, voraussichtlicher Liefertermin ist der 18.4.2025.
Sie können den Titel schon jetzt bestellen. Versand an Sie erfolgt gleich nach Verfügbarkeit.
Sie können den Titel schon jetzt bestellen. Versand an Sie erfolgt gleich nach Verfügbarkeit.
EUR 291,11*
- Herausgeber:
- Jai Govind Singh, Rupendra Kumar Pachauri, Sasidharan Sreedhara
- Verlag:
- Wiley, 04/2025
- Einband:
- Gebunden
- Sprache:
- Englisch
- ISBN-13:
- 9781394249435
- Artikelnummer:
- 12181114
- Umfang:
- 416 Seiten
- Erscheinungstermin:
- 18.4.2025
- Hinweis
-
Achtung: Artikel ist nicht in deutscher Sprache!
Klappentext
Forecasting Methods for Renewable Power Generation is an essential resource for both professionals and students, providing in-depth insights into vital forecasting techniques that enhance grid stability, optimize resource management, and enable effective electricity pricing strategies. It is a must-have reference for anyone involved in the clean energy sector.Forecasting techniques in renewable power generation, demand response, and electricity pricing are vital for grid stability, optimal resource allocation, efficient energy management, and cost-effective electricity supply. They enable grid operators and market participants to make informed decisions, mitigate risks, and enhance the overall reliability and sustainability of the electrical grid. Electricity prices can vary significantly based on supply and demand dynamics. By forecasting expected demand and the availability of generation resources, market operators can optimize electricity pricing strategies. This alignment of prices with anticipated supply-demand balance incentivizes the efficient use of electricity and promotes market efficiency. Accurate forecasting helps prevent price spikes, reduces market uncertainties, and supports the development of effective energy trading strategies.
This book presents these topics and trends in an encyclopedic format, serving as a go-to reference for engineers, scientists, or students interested in the subject. The book is divided into three easy-to-navigate sections that thoroughly examine the AI and machine learning-based algorithms and pseudocode considered in this study. This is the most comprehensive and up-to-date encyclopedia of forecasting in renewable power generation, demand response, and electricity pricing ever written, and is a must-have for any library.